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Abstract:  An analytical solution of the London equation for the weakly coupled grain model of 
high-Tc  superconducting thin films has been obtained in the case of finite thickness by taking full 
account of anisotropic conductivities. Using the solution, we provide general expressions for the 
transmission-line parameters of high-Tc   superconducting transmission lines. Dependences of the 
resistance on the grain size, coupling strength and film thickness have been numerically evaluated 
and discussed. 

 
1.   Introduction 
 
      Intensive studies have been made of applications of high-Tc superconducting transmission lines, 
which have low loss and low dispersion characteristics, to microwave devices for mobile and 
satellite communications. In these applications the precise evaluation of the transmission-line 
parameters of superconducting thin films such as the resistance and the kinetic inductance, which 
result from the complex conductivity, is essential. It has been pointed out by Hylton et al (1988) 
(1989a)(1989b) that these basic parameters are greatly influenced by the weaklinks(Josephson 
junctions) inevitably existing in high-Tc   thin films, i.e., the so-called "weakly coupled grain (WCG) 
model". As a result of this model, it is supposed that the weaklink gives rise to the excess surface 
resistance (Attanasio et al 1991)(Miller et al 1988)(Nguyen et al 1993)(Oates et al 1993) and tends to 
enhance the kinetic inductance of polycrystalline films compared with that of the single crystal 
(Porch et al 1993)(Yoshida et al (1996)(1998)). Detailed studies of this model, however, have not 
been made, especially in terms of anisotropic properties of high Tc  superconducting films. 
      In our previous papers (Yoshida et al (1996)(1998)) we have carried out experimental studies on 
the WCG model neglecting the anisotropy of high Tc  superconducting films. In this paper we make, 
for the first time, a general theoretical formulation of the effects of anisotropy on the WCG model. In 
Sec.2 an analytical solution of the London equation for the weakly coupled grain model of high Tc   

superconducting thin films has been obtained in the case of finite film thickness by taking full 
account of anisotropic conductivities. Using the solution, we obtained the expressions for the 
transmission-line parameters of high Tc  superconducting transmission lines in Sec.3. Dependences of 
the resistance on the grain size, coupling strength and film thickness have been numerically 
evaluated and discussed. 
 
2. Expression for the Magnetic Field Distribution in the Anisotropic Superconducting 

Thin   Film with Grain Boundaries 
 



      In Fig.1 we show the schematic figure of the weakly coupled grain (WCG) model proposed by 
Hylton et al (1988) for a c-axis oriented high Tc superconducting film, where the c-axis of the 
superconducting film is perpendicular to the substrate. The average grain size is assumed to be a, and 
the film thickness is d.  
      In Fig.2 we show the cross section of the superconducting film representing  the WCG model, 
where the external current K [A/m] per unit length in the y direction is assumed to be flowing in the z 
direction.  
 
 
 
 
 
 
 
 
 
 
 
Fig. 1  Schematic of weakly coupled grain                Fig.2 The cross section of the superconducting               
(WCG) model.                                                               thin film 
 
      The London equation for the anisotropic superconductor is given as (Hylton et al 1989)(Van 
Duzer et al 1981)  

 
with the boundary condition at the grain boundary : 
 

 
with 
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where λx and λｚ are the magnetic penetration depth in the x and z direction, respectively,  Jc  is the 
critical current density for the Josephson junction and λJ

(0) corresponds to the penetration depth for 
an isolated single Josephson junction. According to the symmetry and periodicity of the present 
problem, other boundary conditions for a single grain located in the region –a/2≦z≦a/2 can be 
expressed as 
 

 
      The solution of Eq.(1) satisfying boundary conditions Eqs.(2)-(4) is obtained as : 
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      It is shown that in the limit of d = + ∞, Eq.(5) coincides with the solution given by Hylton et al 
(1989a) valid only for the case of a semi-infinite superconductor. Using this solution, the current 
distribution can be obtained from the Maxwell equation  J =  ∇∇× H . 
 
3. The Equivalent Circuit for the High Tc Superconducting Transmission Line with 

Grain Boundaries 
 
      For the case of an applied alternating current as Ieｊωｔ, we obtain the expression for the total 
current density J as 

 
with 
 

 

 
where JN is the normal-conducting current density, JS is the superconducting current density, E is the 
electric field, μ0 is the vacuum permeability, λx = λc is the magnetic penetration depth along the c-
axis and λy = λz = λab is the magnetic penetration depth in the a-b plane, [σ1] is the normal 
conductivity tensor, σ1x = 1 / ρc , σ1y =σ1z = 1 / ρab, ρc  is the resistivity in the c direction and  
ρab is the resistivity in the a-b plane, [σ2] is the superconductivity tensor, ω  is the angular 
frequency.       
      In Fig.3 we show the equivalent circuit for the transmission line with a unit length made of 
anisotropic high Tc superconducting films including grain boundaries. In this figure Lm represents the 
conventional magnetic inductance per unit length, which is almost independent of the conductor 
material, and LkG and LkJ denote the kinetic inductance of the superconductor per unit length for the 
grain and the grain boundary, respectively. RG and RJ represent the resistance per unit length resulted  
from the grain and the grain boundary, respectively. 
      The expressions for the kinetic inductance and the resistance of the grain and the junction can be 
obtained by calculating the kinetic energy of the superconducting electrons and the balance of the 
power consumption, respectively : 

J = JN + JS = ( [σ1] – j [σ2] ) E (6)
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where I is the total current as shown in Fig.3 and the volume integral extends over unit length in the z 
direction. The obtained results are : 
 

 
 
with 

 
where Qx and Qz represent the quality factor for the current component Jx and Jz in the grain, QJ 

represents the quality factor of the junction, RN is the junction resistance, LJ
(0) is the kinetic 

inductance for a single junction, Ic is the junction critical current, Lkx and Lkz are the kinetic 
inductance per unit area (sheet inductance) associated with the current component Jx and Jz,  
respectively, and λJ corresponds to the Josephson penetration depth in the small grain limit (Hylton 
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et al 1989a). The quantities fx and fz represent the current density for the case of a unit applied 
current, i.e, K=1 : They are defined by 
 

 
 

 
      Equations (9), (10) indicate that the resistances are proportional to the respective kinetic 
inductances. 
      The quantity D in Eqs.(9)-(12) is defined by 
 

 
which corresponds to the geometrical factor representing the characteristic length for a particular  
transmission line geometry. The characteristic length D defined by Eq.(15) depends on the geometry 
of the transmission line. If we assume that the film thickness is sufficiently thin and that the 
characteristic impedance is 50Ω on MgO substrate with the permitivity εr= 9.4, D is determined by 
the geometrical configuration of the transmission line almost independent of the internal structure of 
the conductor, and we can obtain numerically following the procedure given in Sheen et al (1991) : 
 
       D  = 0.4  W         for coplanar waveguide 
       D  = 0.5  W         for micro-stripline 
 
where W is the width of the signal electrode. 
      In order to evaluate the values for the resistance for various parameters, we first introduce the 
following normalized parameters ; α= a / ( 2λx ), β= 

 λz
2 /λJ

(0)2, γ= d / ( 2λz ) , where α is the 
normalized grain size, β=λz
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2 Jc
   represents the strength of the coupling 

and  γ is the normalized thickness. 
      In Figs.4,5 and 6 we show the dependence of the resistances per unit length on α, β and γ, 
respectively. In the calculation we used the typical experimental values for YBa2Cu3Ox 
superconductors (Friedmann et al 1990)(Hylton et al 1989) : λab = 0.15 [μm], λc = 0.5 [μm], ρc = 
2.5 × 10-5 [Ωm], ρab= 4.0×10-7 [Ωm], which leads to Qx =1.3×104 and Qz =2.3×103 at ω=2π× 
109 [Hz]. Junction parameters are :  QJ = 4.8 × 102 for it IcRN=1 [mV] and f =109 [Hz]. It must be 
mentioned that Eqs.(9) and (10) lead to the resistances proportional to ω2 in the case of Qx , Qz , QJ 
>> 1. The resistances shown in Figs.4,5 and 6 are calculated at ω=2π× 109  [Hz] in the case of 
D=100 [μm]. 
 
 
 
 
 
 
 
 
Fig.3  The equivalent circuit for the transmission             Fig.4  The dependence of the resistance per  
line with a unit length                                                       unit length on α for β=γ=1. 
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Fig.5  The dependence of the resistance per                     Fig.6  The dependence of the resistance per  
unit length on β for α=γ=1.                                         unit length on γ for α=β=1. 
 
4.   Conclusions 
 
      In the present paper we obtained general expressions for the the resistance and the kinetic 
inductance of the superconducting thin films with grain boundaries by taking full account of 
anisotropic conductivities, which include the normalized grain size α, coupling strength β and 
normalized thickness γ as free parameters. Detailed discussions with specific samples are to be our 
next work. 
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